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A b s t r a c L  An orthorhombic strain is shown to 
transform a f.c.c, lattice into itself. A related 
transformation takes the b.c.c, lattice into itself. 
The energy barriers for two f.c.c, systems are 
found to be of the  o r d e r  of the  m e l t i n g  
temperature.  Possible connections with melting, 
l iqu id  s t r u c t u r e  and  c r y s t a l  g r o w t h  a re  
discussed. 

I n t r o d u c t i o n .  It is well known that the energy 
of a stable crystal increases for any small lattice 
strain. One might expect the energy to increase 
monotonically with increasingly larger  strain,  
but this is not true in general. A certain large 
strain is shown to transibrm a f.c.c, lattice into 
another f.c.c, lattice, i.e., with no net change in 
energy, while a related strain transforms a b.c.c. 
lattice into itself. Close-packed systems are often 
well described by simple pair potentials.  The 
energy barrier  for the f.c.c, transformation has 
been computed for two such systems; a Lennard-  
Jones (rare-gas) model and a rigid-ion model for 
NaF. In both cases the energy barrier (per atom) 
is on the order of the melting temperature. For a 
f in i te-s ized cube-shaped  c rys ta l ,  the t rans-  
formation creates an approximate fivefold angle, 
s u g g e s t i n g  it as a possible mechan i sm  for 
nucleating fivefold symmetries. 

The  magic  s t ra in .  An orthorhombic strain in a 
cubic crystal  is conveniently expressed as a 
product of three matrices 
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whose restor ing stress,  for smal l  s t r a in s ,  is 
proportional to the bulk modulus, the C l l - C 1 2  
shear  modulus  and the C44 shea r  modu lus  
respectively. The constant a0 is defined to be half 
the usual lattice constant ,  i.e., 21/2a 0 is the 
nearest-neighbor separat ion in a f.c.c, lattice. 
When c=c0=(1-21 /2) / (1  + 21/2) and b--bo--(1 
+ c0)3 - 1, 

To='T(ao, bo, co ) -½ - 2  I/2 1 +21/2 

0 0 21/ 

(2) 

and the f.c.c, lattice is transformed into another 
f.c.c, lattice, with the atoms (at latt ice sites) 
rearranged according to (2). The cubic axes of the 
transformed lattice are along the (1, -1, 0), (1, l, 
_21/2) and (1, l, 21/2) directions, which can be 
obtained from the original axes by a 45 ° rotation 
about z followed by another 45 ° rotation about 
the new x axis. This becomes a p p a r e n t  by 
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applying To to the vectors which.become second- 
neighbor positions in the t ransformed lattice.  
Specifically, To(I , -1, 0)= (21/2, _21/2, 0), T0(1, l, 
-2 )=(1 ,  1, _21/2) and To(l, l, 2)=(1,  l, 21/2). Two 
of the second-neighbor atoms in the transformed 
lattice were first neighbors and the other  four 
were th i rd  neighbors.  Obviously, T O is not a 
s imple ro ta t ion  because separa t ions  be tween 
atom pairs, in general,  are changed. Relative to 
the atom at  the origin,  a toms in neighbor ing 
shells are exchanged as follows: two from the 
neares t -ne ighbor  shell  (SI)  go to the second- 
neighbor shell ($2), two $2 go to S1, four $2 go to 
$3, four $3 go to $2, eight $3 go to $5, and the 
exchange  becomes more complex for f u r t h e r  
neighbors. An equivalent  f.c.c, t ransformation is 
obtained for c=-co .  This just  changes the sign of 
the off-diagonal elements of To. 

The t ransformat ion which takes a b.c.c, lattice 
into itself is also given by the general form of (1). 
The 'magic' values in this case are c= +--co and 
b = (1 - co)3 - 1. The b.c.c, t ransformation occurs 
for a par t icular  positive value of b {[11(21/2) - 
7 ] / [ 7 + 5 ( 2 1 / 2 ) ] = 0 . 6 0 8 1 }  w h i l e  t h e  f .c .c .  
t ransformat ion occurs for a part icular  negative 
value, b0 = [1 - 5(21/2)]/[7 + 5(21/2)] -~_0.4315. The 
b.c.c. (f.c.c.) t ransformation expands (contracts) 
the la t t ice  in the  z d i rec t ion .  Thus ,  second 
neighbors a long the z direct ion become third 
(first) neighbors of the transformed b.c.c. (f.c.c.) 
lattice. For the b.c.c, t ransformation four S1 go to 
$2, four $2 go to S1, two $2 go to $3, two $3 go to 
$2, eight $3 go to $4, and of course, the exchange 
becomes more complex for fur ther  neighbors. We 
note tha t  ten of the twelve S1 neighbors in the 
f.c.c, l a t t i c e  r e m a i n  S1 n e i g h b o r s  of the  
t ransformed f.c.c, lattice, while only four of the 
eight  S1 neighbors of the b.c.c, lattice remain S1 
neighbors in the transformed b.c.c, lattice. 

E n e r g y  b a r r i e r .  A f.c.c, l a t t i c e  of a t o m s  
in te rac t ing  via the pair  potential  4c[(o/r)12 - 
(o/r)6] is known to melt  at  a t empe ra tu r e  of 
Tm=O.67c/k ,  where k is the Boltzmann constant. 
At tha t  tempera ture  the lattice is expanded to 
a~ - l . 04ao ,  where  a o - 0 . 7 7 1 1 o  is the  zero- 
t e m p e r a t u r e  e q u i l i b r i u m  value  ( H a n s e n  & 
Verlet, 1969; Br.oughton & Gilmer, 1983). The 
energy per atom E(a0, b, c) relative to the zero- 
tempera ture  unstra ined value, E(a0, 0, 0)= E(a0, 
b0, co) is shown as a contour plot in Fig. 1. The 
associated energy barr ier  is "~0.37~ per atom, 
about half  kTrn. With a=l .O4ao  the bar r ie r  is 
reduced to-~0.2x. 

The NaC] s t ructure  is transformed into itself 
by To provided we also displace the C1 sublattice 
(Na is assumed at  the origin) by a0(½, ½, 0). The 

energy  b a r r i e r  for th i s  t r a n s f o r m a t i o n  was  
computed for NaF using previously publ ished 
potentials (Boyer, 1981) derived by the method of 
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Fig. 2. Min imum energy,  E(d,  a, b, c) - E o, t'or a G o r d o n - K i m  
model of N a F  as a function of subla t t ice  d i s p l a c e m e n t  d 
a long  the  (1,1,0) d i rec t ion .  The g r o u n d - s t a t e  e n e r g y ,  
E 0 = - 0 . 3 5 9 0 2 3 5  Har t r ee ,  occurs a t  Oo=4.38689 Bohr, wi th  
d = O  or d = 2112ao/2. 
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Gordon & Kim (1972). Of the alkali  halides, NaF 
was selected because the overa l l  a g r e e m e n t  
between theory and experiment  for elastic and 
e q u a t i o n - o f - s t a t e  p r o p e r t i e s ,  i n c l u d i n g  
m o l e c u l a r - d y n a m i c s  s i m u l a t i o n  of m e l t i n g  
(Boyer & Pawley, 1988), is remarkably good. The 
static energy per molecule (E) is a function of 
s u b l a t t i c e  d i s p l a c e m e n t  (d) and the s t r a i n  
parameters  a, b and c. A plot of the minimum 
E(d, a, b, c), relative to the absolute minimum 
E 0 = E(0, ao, 0, 0)--E(21/2ao/2 , a0, bo, co), is shown 
in Fig. 2 as a function of d. A corresponding plot 
of the strain parameters  which minimize E is 
given in Fig. 3. In temperature  units (1 t Iar t ree  
k -1- -3 .26×105 K) the ba r r i e r  is ---1250 K per 
atom, approximately the melt ing tempera ture .  
The energy required to expand the static lattice 
to 1.05a0, approximately the value for the solid 
at  the melt ing temperature ,  is "-~750 K per atom. 
Thus  the ba r r i e r  is subs tan t ia l ly  reduced at  
melting. 

D i s c u s s i o n .  The above analysis suggests  tha t  
such t ransformat ions  should be considered in 
developing models for melting, liquid s tructure 
and c rys t a l l i z a t i on .  Severa l  f e a t u r e s  of the 
t r ans fo rma t ion  are  well sui ted for" model ing  
liquid s tructure.  Equivalent  t ransformations are 
fo rmed  by s e l e c t i n g  t he  x or y a x e s  for 
compression,  r a t h e r  than the z axis,  and an 
additional choice is in the sign of the remaining 
strain: the off-diagonal element can be plus or 
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F ig .  3. V a l u e s  for  v o l u m e -  and the two s h e a r - s t r a i n  
pa rame te rs  a, b and c, co r respond ing  to the m i n i m u m -  
energy  curve in Fig. 2. 
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minus (see results  in Fig. !). Thus, six equivalent  
t ransformations are available which, if applied 
many  t imes  at  r andom,  could p r o d u c e  the  
appearance of liquid-like diffusion. Moreover, in 
such a random sequence of t ransformations,  the 
crystallographic axes would lose any a p p a r e n t  
relation to the original axes. In reality, of course, 
microdomains would develop to fur ther  enhance 
diffusion and create disorder. Final ly ,  we note 
that  the shape of a finite crysta l  undergoes  a 
ra ther  drastic change in each t r ans fo rmat ion ,  
which is analogous to a liquid's lack of resis tance 
to shear  stress.  This  b r ings  us to one more  
intr iguing observation. 

If To is applied to a finite-sized cube-shaped 
crystallite, the shape of the transformed crystal- 
lite in the xy plane is a paral lelogram with the 
small interior angle having a cosine of 1/3, or a 
value of ---70.5°; only 1.5 ° from 1/5 of a circle. 
Atomic s t ructures  with fivefold symmetry have 
been the subject of intense inves t iga t ion  since 
their discovery in a luminium alloys (Shechtman, 
Blech, Gratis & Cahn, 1984). The detailed nature  
of their s t ructure is still the subject  of debate  
(S t e inha rd t ,  1986; J a n o t  & Dubois ,  1988),  
although a growing body of evidence sugges ts  
they are  t h r e e - d i m e n s i o n a l  a n a l o g s  of two- 
d i m e n s i o n a l  P e n r o s e  t i l i n g s ,  so c a l l e d  
'quasicrystals ' ,  r a the r  than  e labora te  twinned 
s t ruc tu res ,  boti~ of which can have  fivefold 
symmetry. Regardless of the true nature  of their  
s t r u c t u r e ,  t h e r e  m u s t  be some  p h y s i c a l  
m e c h a n i s m  which  n u c l e a t e s  t h e  f i v e f o l d  
symmetry from the liquid. The t ransformat ions  
described above could possibly provide  th i s  
mechanism,  in this regard,  the  a p p r o x i m a t e  
fivefold angle could be significant in two respects: 
(1) the angle must  be close enough to 72 ° to 
nucleate fivefold structures,  and (2) the imperfect 
f ivefold  a n g l e  m i g h t  e x p l a i n  why  t h e s e  
s t ruc tu res  are only formed by r a p i d - q u e n c h  
t e c h n i q u e s ,  and  c o n s e q u e n t l y ,  why  t h e y  
transform to a f.c.c, ground state when hea ted  
sufficiently. 

The form of the strain tensor used above was 
derived by M. J. Mehl for ca lcu la t ing  e las t ic  
cons tants  in cubic sys tems (Meh], Hemley  & 
Boyer, 1986; Chen, Boyer, K r a k a u e r  & Mehl,  
1988). The special  va lues  of b and  c w e r e  
discovered through an ongoing c o l l a b o r a t i v e  
effort with P. J. Edwardson and R. E. Cohen to 
calculate electrostr ict ive coefficients in a lka l i  
halides. Helpful discussions with 3. Q. Brough- 
ton and W. T. Elam are gratefully acknowledged. 
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