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Abstract. An orthorhombic strain is shown to
transform a f.c.c. lattice into itself. A related
transformation takes the b.c.c. lattice into itself.
The energy barriers for two f.c.c. systems are
found to be of the order of the melting
temperature. Possible connections with melting,
liquid structure and crystal growth are
discussed.

Introduction. It is well known that the energy
of a stable crystal increases for any small lattice
strain. One might expect the energy to increase
monotonically with increasingly larger strain,
but this is not true in general. A certain large
strain is shown to transform a f.c.c. lattice into
another f.c.c. lattice, i.e., with no net change in
energy, while a related strain transforms a b.c.c.
lattice into itself. Close-packed systems are often
well described by simple pair potentials. The
energy barrier for the f.c.c. transformation has
been computed for two such systems; a Lennard-
Jones (rare-gas) model and a rigid-ion model for
NaF. In both cases the energy barrier (per atom)
is on the order of the melting temperature. For a
finite-sized cube-shaped crystal, the trans-
formation creates an approximate fivefold angle,
suggesting it as a possible mechanism for
nucleating fivefold symmetries.

The magic strain. An orthorhombic strain in a
cubic crystal is conveniently expressed as a
product of three matrices

alag 0 0
T(a,b,c)=| 0 alag O
0 0 alag

1+ b)-173 0 0 1 ¢ 0
X 0 (1+5)-13 0 c 1 0 (1)
0 0 1+5)2310 0 1/(1-c2)

whose restoring stress, for small strains, is
proportional to the bulk modulus, the Cy;-Cj2o
shear modulus and the C44 shear modulus
respectively. The constant ag is defined to be half
the usual lattice constant, i.e., 21/2g( is the
nearest-neighbor separation in a f.c.c. lattice.
When c=co=(1 - 2172)/(1 + 21/2) and b=bp=(1
+cg)3-1,

14212 1-2122 ¢
To=T(ag, by, co) =% |1-212 1+2172 ¢ (2)
0 0 212

and the f.c.c. lattice is transformed into another
f.c.c. lattice, with the atoms (at lattice sites)
rearranged according to (2). The cubic axes of the
transformed lattice are along the (1, -1, 0), (1, 1,
-21/2) and (1, 1, 21/2) directions, which can be
obtained from the original axes by a 45° rotation
about z followed by another 45° rotation about
the new x axis. This becomes apparent by
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applying T to the vectors which.become second-
neighbor positions in the transformed lattice.
Specifically, To(1, -1, 0)=(2172, 2172 (), Ty(1, 1,
-2)=(1,1,-212) and Ty(1, 1, 2)=(1, 1, 21/2). Two
of the second-neighbor atoms in the transformed
lattice were first neighbors and the other four
were third neighbors. Obviously, Ty is not a
simple rotation because separations between
atom pairs, in general, are changed. Relative to
the atom at the origin, atoms in neighboring
shells are exchanged as follows: two from the
nearest-neighbor shell (S1) go to the second-
neighbor shell (S2), two S2 go to S1, four S2 go to
S3, four 83 go to S2, eight S3 go to S5, and the
exchange becomes more complex for further
neighbors. An equivalent f.c.c. transformation is
obtained for c=—cp. This just changes the sign of
the off-diagonal elements of T'.

The transformation which takes a b.c.c. lattice
into itself is also given by the general form of (1).
The 'magic' values in this case are ¢= * ¢y and
b=(1 -~ ¢g)3 - 1. The b.c.c. transformation occurs
for a particular positive value of b {[11(21/2) -
THIT+5(21/2)1=0.6081} while the f.c.c.
transformation occurs for a particular negative
value, bg=[1 - 5(212)}/[7 + 5(21/2)]=-0.4315. The
b.c.c. (f.c.c.) transformation expands (contracts)
the lattice in the z direction. Thus, second
neighbors along the z direction become third
(first) neighbors of the transformed b.c.c. (f.c.c.)
lattice. For the b.c.c. transformation four S1 go to
S2, four S2 go to S1, two S2 go to S3, two S3 go to
S2, eight S3 go to S4, and of course, the exchange
becomes more complex for further neighbors. We
note that ten of the twelve S1 neighbors in the
f.c.c. lattice remain S1 neighbors of the
transformed f.c.c. lattice, while only four of the
eight S1 neighbors of the b.c.c. lattice remain S1
neighbors in the transformed b.c.c. lattice.

Energy barrier. A f.c.c. lattice of atoms
interacting via the pair potential 4e[(o/r)12 -
(0/r)6] is known to melt at a temperature of
T,,=0.67¢/k, where k is the Boltzmann constant.
At that temperature the lattice is expanded to
a=1.04ap, where a3=0.77110 is the zero-
temperature equilibrium value (Hansen &
Verlet, 1969; Broughton & Gilmer, 1983). The
energy per atom E(ag, b, ¢) relative to the zero-
temperature unstrained value, E(ag, 0, 0) = E(ay,
by, cp) is shown as a contour plot in Fig. 1. The
associated energy barrier is ~0.37¢ per atom,
about half £T,,. With a=1.04a; the barrier is
reduced to ~0.2¢.

The NaCl structure is transformed into itself
by T provided we also displace the Cl sublattice
(Na is assumed at the origin) by ag(}, %, 0). The
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energy barrier for this transformation was
computed for NaF using previously published
potentials (Boyer, 1981) derived by the method of

=025
0.0

Fig. 1. Contour plot of the energy E - E;, of a Lennard- Jones
f.c.c. lattice for fixed volume (a=ay=0.77110) as a function
of strains b and c¢. Energy contours are relative to the
ground-state energy Ey=Elay, 0, 0)=Elay, by, ¢;)=-8.583¢
and have values 0.1, 0.2, 0.3, 0.4, 0.6, 1.0, 2.0, 4.0, 8.0 and
16.0 in units of ¢.
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Fig. 2. Minimum energy, E(d, a, b, ¢) - E;, for a Gordon-Kim
model of NaF as a function of sublattice displacement d
along the (1,1,0) direction. The ground-state energy,
Ey,=-0.3590235 Hartree, occurs at a,=4.38689 Bohr, with
d=0ord=212ay2.
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Gordon & Kim (1972). Of the alkali halides, NaF
was selected because the overall agreement
between theory and experiment for elastic and
equation-of-state properties, including
molecular-dynamies simulation of melting
(Boyer & Pawley, 1988), is remarkably good. The
static energy per molecule (E) is a function of
sublattice displacement (d) and the strain
parameters a, b and c¢. A plot of the minimum
E(d, a, b, c), relative to the absolute minimum
Eg=E(0, ag, 0, 0)=E(21/2qy/2, ay, by, cg), is shown
in Fig. 2 as a function of d. A corresponding plot
of the strain parameters which minimize E is
given in Fig. 3. In temperature units (1 Hartree
k-1=3.26 X105 K) the barrier is ~1250 K per
atom, approximately the melting temperature.
The energy required to expand the static lattice
to 1.05ag, approximately the value for the solid
at the melting temperature, is ~750 K per atom.
Thus the barrier is substantially reduced at
melting.

Discussion. The above analysis suggests that
such transformations should be considered in
developing models for melting, liquid structure
and crystallization. Several features of the
transformation are well suited for modeling
liquid structure. Equivalent transformations are
formed by selecting the x or y axes for
compression, rather than the z axis, and an
additional choice is in the sign of the remaining
strain: the off-diagonal element can be plus or
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Fig. 3. Values for volume- and the two shear-strain

parameters a, b and ¢, corresponding Lo the minimum-
energy curve in Fig. 2.

minus (see results in Fig. 1). Thus, six equivalent
transformations are available which, if applied
many times at random, could produce the
appearance of liquid-like diffusion. Moreover, in
such a random sequence of transformations, the
crystallographic axes would lose any apparent
relation to the original axes. In reality, of course,
microdomains would develop to further enhance
diffusion and create disorder. Finally, we note
that the shape of a finite crystal undergoes a
rather drastic change in each transformation,
which is analogous to a liquid's lack of resistance
to shear stress. This brings us to one more
intriguing observation.

If Ty is applied to a finite-sized cube-shaped
crystallite, the shape of the transformed crystal-
lite in the xy plane is a parallelogram with the
small interior angle having a cosine of 1/3, or a
value of ~70.5% only 1.5° from 1/5 of a circle.
Atomic structures with fivefold symmetry have
been the subject of intense investigation since
their discovery in aluminium alloys (Shechtman,
Blech, Gratis & Cahn, 1984). The detailed nature
of their structure is still the subject of debate
(Steinhardt, 1986, Janot & Dubois, 1988),
although a growing body of evidence suggests
they are three-dimensional analogs of two-
dimensional Penrose tilings, so called
'quasicrystals’, rather than elaborate twinned
structures, both of which can have fivefold
symmetry. Regardless of the true nature of their
structure, there must be some physical
mechanism which nucleates the fivefold
symmetry from the liquid. The transformations
described above could possibly provide this
mechanism. In this regard, the approximate
fivefold angle could be significant in two respects:
(1) the angle must be close enough to 72° to
nucleate fivefold structures, and (2) the imperfect
fivefold angle might explain why these
structures are only formed by rapid-quench
techniques, and consequently, why they
transform to a f.c.c. ground state when heated
sufficiently.

The form of the strain tensor used above was
derived by M. J. Mehl for calculating elastic
constants in cubic systems (Mehl, Hemley &
Boyer, 1986; Chen, Boyer, Krakauer & Mehl,
1988). The special values of b and ¢ were
discovered through an ongoing collaborative
effort with P. J. Edwardson and R. E. Cohen to
calculate electrostrictive coefficients in alkali
halides. Helpful discussions with J. Q. Brough-
tonand W. T. Elam are gratefully acknowledged.
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